82 research outputs found

    Difficulties in Testing for Covarion-Like Properties of Sequences under the Confounding Influence of Changing Proportions of Variable Sites

    Get PDF
    The covarion (COV)-like properties of sequences are poorly described and their impact on phylogenetic analyses poorly understood. We demonstrate using simulations that, under an evolutionary model where the proportion of variable sites changes in nonadjacent lineages, log likelihood values for rates across site (RAS) and COV models become similar, making models difficult to distinguish. Further, although COV and RAS models provide a great improvement in likelihood scores over a homogeneous model with these simulated data, reconstruction accuracy of tree building is low, suggesting caution when it is suspected that proportions of variable sites differ in different evolutionary lineages. We study the performance of a recently developed contingency test that detects the presence of COV-type evolution modified for protein data. We report that if proportions of variable sites (pvar) change in a lineage-specific manner such that their distributions in different lineages become sufficiently nonoverlapping, then the contingency test can incorrectly suggest a homogeneous model. Also of concern is the possibility of different proportions of variable sites between the groups being studied. In a study of chloroplast proteins, interpretation of the test is found to be susceptible to different partitioning of taxon groups, making the test very subjective in its implementation. Extreme intergroup differences in the extent of divergence and difference in proportions of variable sites could be contributing to this effect

    Recent advances in the detection of repeat expansions with short-read next-generation sequencing

    Get PDF
    Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2-6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction-based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions

    Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    Get PDF
    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency

    Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss

    Get PDF
    Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy. Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells. Results: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations. Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects

    Louse (Insecta : Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable

    Get PDF
    Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit distances between louse 12S rRNA structures do not closely resemble trees constructed from sequence data, suggesting that at least some of this structural variation has arisen independently in different louse lineages. Taken together with previous work on mitochondrial gene order and elevated rates of substitution in louse mitochondrial sequences, the structural variation in louse 12S rRNA confirms the highly distinctive nature of molecular evolution in these insects

    Placing the Fijian Honeyeaters within the meliphagid radiation: implications for origins and conservation

    Get PDF
    Understanding the evolutionary relationships of threatened species provides an important framework for making decisions about their conservation. However, unrecognised problems with the underlying phylogenetic analyses may bias the decision-making process. Recent phylogenetic studies have improved our understanding of Meliphagidae, but also indicate discordance between molecular datasets. Here, we examine the causes of this discordance using maximum likelihood tree-building and network analyses of identically sampled datasets for four genetic loci. Our results suggest that while we can be reasonably confident of relationships within species groups, discordance within and between molecular datasets tends to obscure relationships towards the base of the meliphagid tree. This ongoing uncertainty likely reflects differences in the sampling of markers and taxa between previously published analyses. To avoid the problems of conflicting data we used divergence time analyses of only the most densely sampled marker, NADH-ubiquinone oxidoreductase chain 2, to investigate the age and origins of the Fijian Meliphagidae. Our analyses suggest two temporally distinct colonisations of the Fijian archipelago. The large-bodied honeyeaters arrived ,15.6 million years ago, subsequently diversifying and spreading to Tonga and Samoa. In contrast, Myzomela appears to have arrived within the last 5.0 million years. The phylogenetic results therefore imply that conserving the evolutionary diversity of Meliphagidae in Polynesia requires that effort be spread across both the currently recognised taxa and geographical range

    Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5

    Get PDF
    Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal epilepsy secondary to extensive type IIA focal cortical dysplasia identified a paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This variant has previously been reported to cause familial focal epilepsy with variable foci in patients with normal brain imaging. Immunostaining of resected brain tissue from both brothers demonstrated mammalian target of rapamycin (mTOR) activation. This report shows the histopathological features of cortical dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation in the malformed tissue and expands the spectrum of neurological manifestations of DEPDC5 mutations to include severe phenotypes with large areas of cortical malformation.Thomas Scerri, Jessica R. Riseley, Greta Gillies, Kate Pope, Rosemary Burgess, Simone A. Mandelstam ... et al

    The Complete Nucleotide Sequence of the Coffee (Coffea Arabica L.) Chloroplast Genome: Organization and Implications for Biotechnology and Phylogenetic Relationships Amongst Angiosperms

    Get PDF
    The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (\u3e 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)–trnT (GGU) spacer, ycf4–cemA spacer, trnI (GAU) intron and rrn5–trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop

    Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy
    corecore